Самый большой и мощный в мире рентгеновский лазер начинает вырабатывать первые импульсы

Лазер на свободных электронах основывается на принципе синхротрона, одного из видов ускорителей частиц. Ускоритель лазера разгоняет электроны до релятивистских скоростей при помощи череды электромагнитных устройств, в данном случае интенсивность полученного пучка электронов в миллиард раз больше интенсивности, получаемой при помощи большинства других синхротронов. Приобретенная электронами энергия при помощи специальных устройств преобразовывается в очень яркое рентгеновское излучение, позволяющее получать высококачественные изображения с атомарной разрешающей способностью.

Ключевым компонентом лазера XFEL является линейный ускоритель, длиной 2.1 километра, оснащенный электромагнитами со сверхпроводящими обмотками. В недрах этого ускорителя импульс электронов ускоряется почти до скорости света, приобретая очень высокую энергию, прежде чем попасть в фотонный туннель, длиной 210 метров, в котором находится масса устройств, вырабатывающих рентгеновское излучение. Эти устройства в общей сложности состоят из 17 290 магнитов-ондуляторов с переменными полюсами, располагающимися ниже и выше потока электронов. Поле этих магнитов отклоняет электроны от прямой траектории движения и электроны, теряя энергию «на поворотах», испускают высокоэнергетическое рентгеновское излучение строго определенной частоты.

В результате работы установки каждый импульс электронов производит чрезвычайно яркий импульс рентгеновского излучения. Этот импульс при помощи специальных рентгеновских зеркал будет расщеплен на несколько, подающихся в залы, в помещениях которых производятся научные эксперименты и исследования. Таким образом, во время работы лазера XFEL можно будет параллельно проводить сразу несколько экспериментов.

Поскольку лазер XFEL излучает рентген с длиной волны, сопоставимой с диаметром атома, разрешающая способность получаемых при его помощи снимков позволит ученым глубже проникнуть в тайны «микро- и нанокосмоса». Кроме этого, лазер XFEL может использоваться для проведения съемки быстротекущих химических и физических процессов, для моделирования условий, с которыми людям придется сталкиваться при длительных путешествиях в космосе и пребывании на поверхности других планет.

 

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: